Bugün doğadaki malzemelerin yapısını inceleyerek bunları çalışmalarında örnek olarak kullanan pek çok bilim adamı vardır. Çünkü doğadaki materyaller ihtiyaç duyulan sağlamlık, hafiflik, esneklik gibi özelliklere sahiptir. Örneğin "Abalone" adı verilen bir deniz canlısının iç kabuğu, yüksek teknolojiyle üretilen seramiklerden iki kat daha dayanıklıdır; örümceğin ipeği çelikten beş kat daha sağlamdır; midyedeki yapışkan ise suyun altında dahi etkisini koruyabilmektedir.18
Bilim ve Teknik Dergisi araştırma ve yazı grubunun bir üyesi olan Gülgün Akbaba, doğadaki malzemelerin üstün özelliklerinden ve insanların bunlardan nasıl yararlanacağından şöyle bahseder:
Geleneksel seramik ve cam malzemeler, hemen her gün kendini yenileyen teknolojiye ayak uyduramaz hale geldi. Bilim adamları bu boşluğu doldurabilmek için çalışmalar yapıyorlar. Doğadaki yapıların mimari sırları yavaş yavaş çözülmeye başlandı… Tıpkı doğadaki bir midye kabuğunun kendi kendini yenilemesi ya da yara almış bir köpek balığının derisinde gerçekleşen onarım gibi, teknolojilerde kullanılan malzemeler de kendi kendini yenileyebilecek. Daha sert, sağlam, dayanıklı, üstün fiziksel, mekanik, kimyasal ve elektromanyetik özelliklere sahip olan bu malzemeler, örneğin uzay araştırmalarında roket, uzay mekiği, uydu taşıyıcıları gibi araçların atmosfer giriş ve çıkışlarında gereksinim duyulan yüksek sıcaklıklara dayanıklılık ve hafiflik özelliklerini taşıyor. Kıtalararası ulaşım için geliştirilmesi planlanan süpersonik dev yolcu uçakları çalışmalarında da ağırlıkça hafif ve yüksek sıcaklıklara dayanıklı malzemeler gerekiyor. Tıpta örneğin yapay kemik üretiminde gereksinim duyulansa, süngerimsi görünüşü, sert yapısıyla dokusu doğala olabildiğince yakın malzemeler.19
Seramik, inşaattan elektrik malzemelerine kadar geniş kullanım alanı olan bir malzemedir. Ne var ki bu malzeme üretilirken çoğu zaman 1000-1500 oC'den daha fazla sıcaklıklara ulaşan bir ısının kullanılması gerekir.
Abalone |
Doğada birçok seramik malzeme vardır. Ancak bunların oluşumu sırasında hiçbir zaman böyle yüksek sıcaklıklar kullanılmaz. Örneğin midye kabuğu 4oC'de ve en mükemmel biçimde oluşmaktadır. Doğadaki bu üstün yaratılış örneği bir Türk bilim adamı olan İlhan Aksay'ın dikkatini çekmiş ve kendisi daha iyi, sağlıklı, kullanışlı, işlevsel seramiklerin nasıl üretileceği konusuna yönelmiştir. Bazı deniz hayvanlarının kabuklarının iç yapılarını inceleyen Aksay, Abalone adlı deniz canlısının kabuğundaki yapının olağanüstülüğünü hemen fark etmiştir. Aksay konuyla ilgili şunları söyler:
Midye kabuğu elektron mikroskobu altında 300.000 kez büyütüldüğünde, tuğladan bir duvar görünümü ortaya çıkar. Bu duvar, harç niteliğindeki bir proteinden ve kalsiyum karbonattan yapılmış tuğlalardan oluşur. Kalsiyum karbonat kırılgan bir niteliğe sahip olmasına karşın, kabuk katmanlı yapısından dolayı olağanüstü sağlam ve insan yapımı seramikten daha az kırılgandır. Bir halatın sadece bir ipi koptuğunda bütün halat kopmuş olmaz. İşte buna benzer şekilde midye kabuğunun bu katmanlı yapısı çatlakların yayılmasına engel olur.20
1Aksay, bu modellerden esinlenerek son derece sert ve dayanıklı alüminyum-bor karbür metal- seramik bir malzeme geliştirmiştir. Bu malzeme, ABD'de ordunun çeşitli laboratuvarlarında denendikten sonra tanklarda zırh olarak kullanılmıştır.21
Bugün bilim adamları biyomimetik malzemelerin üretilmesi için mikroskobik boyutlarda incelemeler yapmaktadır. Bu bilim adamlarından biri olan Prof. Aksay da, kemik ve diş türü biyoseramiklerin, vücut sıcaklığında, protein gibi organik maddelerin birleştirilmesiyle oluştuğunu ve bunların insan üretimi seramiklerden çok daha üstün nitelikler gösterdiğini açıklamıştır. Aksay'ın çalışmaları, yani doğadaki üstün niteliklerin nanometre (milimetrenin milyonda biri) boyutlarındaki birleştirmeden kaynaklanmış olduğu tezi, bu boyutlarda araç üretmeyi amaçlayan birçok elektronik şirketini biyoesinli malzeme (biyolojik malzemelerden esinlenilerek hazırlanan insan yapısı malzemeler) araştırmalarına yöneltmiştir.22
Endüstride kullanılan pek çok madde zararlı kimyasalların bulunduğu, yüksek ısı ve basınç gerektiren ortamlarda üretilirler. Halbuki doğadaki materyaller "yaşam dostu" olarak ifade edebileceğimiz zararsız koşullarda -örneğin su bazlı solüsyonlarda, oda sıcaklığında- üretilirler. Bu da kuşkusuz, bilim adamları için son derece önemli bir avantaj sağlar.23
| |
Midye kabuğu mikroskobik boyuttaki tuğlalardan oluşur. Bu katmanlı yapı kabuktaki çatlakların yayılmasına engel olur. | |
Mercanlar sağlamlık açısından midye kabuklarındaki sedef ile yarışabilir. Mercanlar, denizdeki kalsiyum tuzlarını kullanarak gemilerin çelik gövdelerini yaracak kadar sert bir yapı oluştururlar. |
Sentetik elmas üreticileri, metal alaşım tasarımcıları, polimer bilimcileri, fiber optik uzmanları, ince seramik üreticileri ve yarı-iletken malzeme geliştirenler en pratik yol olarak biyomimetik yöntemlerine başvurmaktadırlar. Çünkü her yönden ihtiyaçlarına cevap veren doğadaki malzemeler, aynı zamanda çok geniş bir çeşitliliğe de sahiptir. Dolayısıyla çeşitli dallarda araştırma yapan uzmanlar, kurşun geçirmez yeleklerden jet motorlarına kadar pek çok konuda, doğada bulunan üstün özelliklerdeki malzemeleri suni yollardan elde edebilmek için orijinallerini taklit etmeye başlamışlardır.
İnsanların yaptığı malzemeler bir süre sonra çatlar, kırılır. Bu durumda dışarıdan bir müdahaleyle, örneğin yapıştırmayla malzeme onarılır. Oysa doğadaki durum farklıdır. Midye kabuğu gibi doğadaki bazı malzemeler kendi kendilerini yenileyebilirler. Bilim adamları da son dönemde kendini yenileyebilen polimerler, polisiklatlar vb. malzemeler üzerinde çalışmalara yönelmişlerdir. Sağlam ve kendi kendini onarabilen biyoesinli malzeme geliştirmek için örnek alınan doğal malzemelerden birisi de gergedan boynuzudur. Bu araştırmalar, 21. yüzyılın malzeme biliminde üzerinde çalışılacak konulara temel olacaktır.24
Abolone adlı deniz canlısından esinlenilerek elde edilen malzeme, ABD'de ordunun çeşitli laboratuvarlarında denendikten sonra tanklarda zırh olarak kullanılmıştır. |
Doğadaki pek çok malzeme insanlara örnek olabilecek üstün özelliklere sahiptir. Mesela kemiğin bir gramı demirin bir gramına oranla çok daha sağlamdır. |
Birbirine karışmayan iki veya daha fazla katının bileşimiyle oluşan katı malzemelere "kompozit malzeme" denir.25 Doğadaki malzemelerin çoğu "kompozit" olarak adlandırılan bileşik yapılı maddelerden oluşur. Bu karışımın özelliği, kendini oluşturan maddelerin özelliklerinden çok daha üstündür.
Hafif yapılı kompozit malzemeler üstün nitelikleri nedeniyle uzay teknolojisinden, spor malzemelerine geniş bir alanda kullanılmaktadır. |
Örneğin fiberglas yapay bir kompozittir ve gemi gövdesi, olta değneği, yay ve ok gibi birçok spor malzemesinin yapımında kullanılır. Fiberglas, "polimer" adı verilen jölemsi plastik bir maddenin içine karıştırılan cam liflerinden elde edilir. Polimerin sertleşmesi sonucunda oluşan kompozit malzeme hafif, sağlam ve aynı zamanda esnektir. Karışımda kullanılan liflerin ya da plastik maddenin nitelikleri değiştirilecek olursa, kompozit malzemenin özellikleri de değişir.26
İnsanların ürettiği kompozitler, doğal kompozitlerden çok daha zayıf ve ilkel kalmaktadır. Grafit ve karbon liflerden oluşan kompozitler son 25 yılda insanoğlunun gerçekleştirdiği en iyi 10 mühendislik keşfi içinde yer almaktadır. Bununla beraber yeni uçaklar, uzay mekiği parçaları, spor malzemeleri, Formula-1 yarış arabaları ve yelkenliler için hafif yapıda kompozit malzemeler tasarlanmakta ve yeni buluşlar hızla ilerlemektedir.
Burada kısaca değindiğimiz kompozit malzemeler de doğadaki tüm olağanüstü yapı, malzeme ve sistemler gibi Allah'ın eşsiz yaratma sanatının birer örneğidir. Yaratılıştaki bu benzersizlik ve mükemmelliğe birçok Kuran ayetinde de dikkat çekilmiştir. Allah, benzersiz yaratmasının bir sonucu olarak, insanlara verdiği her türlü nimetin sayısının sayılamayacak kadar fazla olduğunu bir ayette şöyle bildirmiştir:
Eğer Allah'ın nimetini saymaya kalkışacak olursanız, onu bir genelleme yaparak bile sayamazsınız. Gerçekten Allah, bağışlayandır, esirgeyendir.
(Nahl Suresi, 18)
Fiberglas tekniği, teknolojide 20. yüzyılda kullanılmaya başlanmıştır. Ancak bu malzeme canlılarda, var oldukları ilk günden beri mevcuttur. Örneğin timsahın derisi fiberglasla aynı yapıda bir malzemedir.
Bilim adamları okun, bıçağın ve hatta bazen kurşunların bile işlemediği timsah derisinin neden bu kadar sağlam olduğunu yakın bir zamana kadar bilmiyorlardı. Konuyla ilgili yapılan araştırmalar çok ilginç sonuçlar vermiştir: Timsahın sırt derisinde özel bir doku bulunmaktadır. Bu dokuya sağlamlığını veren malzeme, içinde kullanılan kolajen proteini lifleridir. Bu liflerin özelliği ise dokuların içerisine eklenerek dokunun yapısını güçlendirmeleridir. Kuşkusuz bu malzeme (kolajen) bunca ayrıntıya ve özelliğe evrimcilerin iddia ettikleri gibi uzun yıllar içerisinde birbirini takip eden tesadüfler sonucunda sahip olmamıştır. Bu madde, yeryüzünde daha ilk olarak ortaya çıktığında sahip olduğu mükemmel özelliklerle birlikte yaratılmıştır.
Doğal kompozitlere başka bir örnek olarak kasları kemiklere bağlayan dokuları yani "tendon"ları verebiliriz. Tendonlar, kendilerini oluşturan kolajen bazlı lifler sayesinde son derece sert bir yapı kazanırlar. Bu liflerin bir başka özelliği ise birbirlerine örülme şekilleridir.
ABD Rutgers Üniversitesi öğretim üyelerinden Janine M. Benyus, Biomimicry adlı kitabında, kaslarımızdaki tendonların çok özel bir yöntemle inşa edildiğini söyleyerek bu konudaki tespitlerini şöyle ifade etmiştir:
Dirsekle bileğiniz arasındaki tendon, asma bir köprüyü taşıyan halatlarda olduğu gibi, birbirine dolanmış kablo demetlerinden oluşur. Her bir kablo demeti ise, kendi içinde daha ince kabloların birbirine dolanmasından oluşmuştur. Bu daha ince kablolar da, birbirine dolanmış molekül demetlerinden meydana gelir. Hatta moleküllerdeki atomlar bile sarmal bir yapı halinde dururlar.27
Nitekim günümüz asma köprülerinde kullanılan çelik halat teknolojisi, insan vücudundaki tendonların yapısı örnek alınarak geliştirilmiştir. Tendonların bu benzersiz tasarımı, Allah'ın üstün sanatının ve sonsuz ilminin apaçık delillerinden sadece birisidir.
1. Kablo demeti | 3. Taşıyıcı halat | 4. Kas |
Asma köprülerdeki taşıyıcı halatlar, kaslarımızda olduğu gibi kablo demetlerinden oluşur. |
Yunus ve balinaların vücutları yağ tabakası ile kaplıdır. Bu tabaka balinalara nefes almaları için yüzeye çıkabilmelerini sağlayan doğal bir şamandıra görevi görür. Aynı zamanda bu sıcakkanlı memeliyi okyanusun soğuk sularından korur. Balina yağının bir başka özelliği ise şeker ve proteine nazaran iki ile üç kat daha fazla enerji vermesidir. Balina, binlerce kilometre yol katettiği ve yeteri kadar beslenemediği uzun göçlerde ihtiyaç duyduğu enerjiyi vücudundaki bu yağdan temin eder.
Bunun yanı sıra balina yağı lastik gibi esnek bir malzemeden oluşur. Balina kuyruğunu suya her vurduğunda kuyruğu önce sıkışır, sonra genleşerek eski halini alır. İşte bu özellik balinaya hem ekstra bir hız kazandırır hem de uzun yolculuklarda %20 enerji tasarrufu sağlar.28 Balina yağı tüm bu özelliklerinden ötürü, bilinen en çok fonksiyona sahip malzeme olarak kabul edilmektedir.
Balina yağı balinalarda yüzyıllardır var olan bir maddedir. Ancak bu yağın bir ağ gibi birbirine geçen kolajen liflerden oluştuğu yakın bir zamanda keşfedilebilmiştir. Bilim adamları bu yağ-kompozit karışımının işlevlerini anlamak için halen çalışmalar yapmaktadırlar. Şu ana kadar edindikleri bilgiler bile, sentetik malzeme üretiminde son derece faydalı olmuştur.
Jet motorlarındaki güçlü pervanelerin yapımında kullanılacak malzemenin geliştirilmesinde, inciyi oluşturan sedefin yapısı taklit edilmektedir. Pek çok yumuşakçanın kabuğunun iç katmanındaki sedefin %95'i tebeşirdir; fakat sedef kompozit yapısı sayesinde tebeşirden 3.000 kat daha dayanıklıdır. Bu yapı incelendiğinde 8 mikron (1 mikron=10-6 metre) eninde ve 0,5 mikron kalınlığındaki mikroskobik plakaların tabakalar şeklinde dizildiği görülür. Bu plakalar kalsiyum karbonatın yoğun ve kristal gibi parlak bir şeklidir. Fakat bu plakaların birleştirilmesi ipek benzeri yapışkanlı bir protein sayesinde mümkün olmaktadır.29
Bu kombinasyon iki yönlü bir sertlik sağlar. Öncelikle sedef üzerine ağır bir yük konulduğunda oluşan kırıklar, ince tabakalar boyunca ilerler fakat protein tabakalarını geçmeye çalışırken yön değiştirirler. Bu, uygulanan kuvveti dağıtır ve böylece kırılma durdurulmuş olur. İkinci bir güçlendirici faktör de, bir kırık oluşunca, protein tabakalarının kırıklar boyunca gerilmesidir. Bu gerilim sayesinde kırılmayı devam ettirecek olan enerji emilmiş olur.30
| |||
Jet motoru | 1. Levhalar, | 2.Organik Harç, | 3. Kalsiyum Karbonat Tuğlalar |
Tuğlalardan örülmüş bir duvar görünümündeki sedefin iç yapısı, organik bir harçla sıkıştırılmış tabakalardan oluşur. Darbeyle oluşan çatlaklar, bu harcı geçmeye çalışırken yön değiştirirler, böylece hızları kesilerek bir süre sonra dururlar.31 |
İşte sedefin hasarı azaltan bu özel yapısı, pek çok bilim adamı için de araştırma konusu olmuştur. Doğadaki malzemelerin böylesine akılcı yöntemlerle dayanıklılık kazanmış olması, kuşkusuz, üstün bir yaratılışı göstermektedir. Bu örnekten de anlaşılacağı gibi Allah bizlere apaçık varlığının ve yaratmasındaki üstün güç ve kudretinin delillerini sonsuz ilmi ve aklıyla göstermektedir. Bir ayette Allah şöyle buyurmaktadır:
Göklerde ve yerde her ne varsa O'nundur. Şüphesiz Allah, hiçbir şeye ihtiyacı olmayan (Gani)dır, övülmeye layık olandır. (Hac Suresi, 64)
Bitkisel kompozitler diğer canlılardakinden farklı olarak, kolajenden çok "selüloz" adı verilen bir maddeden oluşurlar. Ağacın sert ve dayanıklı yapısı, ürettiği bu selüloz lifler sayesinde oluşur. Çünkü selüloz, sert ve suda çözünemeyen bir maddedir. İşte tahtanın inşaatlarda kullanılmasını avantajlı kılan da selülozun bu özelliğidir. "Gerilebilen ve örneği bulunmayan" bir malzeme olarak tanımlanan selüloz, tahta binaların asırlarca ayakta durmasında, binaların, köprülerin, mobilyaların ve pek çok aletin yapımında diğer tüm malzemelerden daha fazla kullanılmaktadır.
1. Molekül (<10Å) |
Tahta, tüp şeklindeki liflerden oluşur. (yanda) Bu, tahtaya dayanıklılık özelliğini kazandırır. Selüloz olarak adlandırılan tahtanın hammaddesi kar- maşık bir kimyasal yapıya sahiptir. (sağda altta) Eğer selülozu oluşturan kimyasal bağlar ya da atomlar farklı olsaydı, tahta bu kadar esnek ve sağlam bir yapıda olamazdı. |
Tahta, düşük hızdaki darbelerin enerjisini emerek, oluşan hasarı belirli bir yerde sınırlandıran çok etkili bir maddedir. Özellikle de darbenin tahtanın damarlarına dik açıyla geldiğinde oluşan hasarın azaltılmasında çok daha iyi sonuçlar elde edilir. Yapılan araştırmalarda tahta cinsleri arasında da dayanıklılık bakımdan farklılıklar tespit edilmiştir. Bu konudaki belirleyici faktörlerden ilki yoğunluktur. Daha yoğun olan tahtalar darbe sırasında daha fazla enerji emerler. Damarların sayısı, boyutu ve dağılımı da tahtaya uygulanan darbenin deformasyonunun azaltılmasında etkili olan faktörlerdir.32
İkinci Dünya Savaşı'nın "Mosquito"ları -şimdiye kadarki en çok hasar tolere edebilen uçaklar- hafif balsa tahtasının daha yoğun olan kontrplak tabakaları arasında sıkıştırılmasından yapılıyordu. Tahtanın sertliği, ona çok güvenli bir malzeme niteliği kazandırır. Tahta kırılırken çatlamaları izleyebileceğiniz kadar yavaş bir kırılma gerçekleşir ve bu özellik tedbir alınması için vakit kazandırmış olur.33
1. Tahtadaki tüp şeklindeki duvarları taklit etmek için dikkatlice yerleştirilmiş lifler. |
Kurşun geçirmez giysi yapabilmek için ağacın örnek alınan yapısı. (solda) Ağaç farklı bir yapıda olsaydı, süper sert bir malzemeye sahip olamazdı. |
Tahta, uç uca eklenmiş uzun, oyuk hücrelerin oluşturdukları paralel kolonlardan oluşmuştur. Çevrelerinde ise spiraller halinde selüloz lifler sarılıdır. Ayrıca bu hücreler kompleks polimer yapıda reçineden yapılmış bir madde içindedir. Spiral olarak sarılmış bu tabakalar hücre duvarının toplam kalınlığının %80'ini oluşturur ve ana yükü çeken bileşen de bu kısımdır.
Tahtanın tasarımı örnek alınarak yapılan malzemelerin, kurşun-geçirmez giyimde kullanılabilecek kadar dayanıklı olacağına inanılıyor.35 |
Bir tahta hücresi içe çöktüğünde, kendisini çevreleyen hücrelerden koparak darbenin enerjisini emer. Çöküntüler lifler boyunca uzun bir çatlak oluşturdukları halde tahta bozulmadan kalır. Tahta, kırık bile olsa belli bir miktardaki yükü taşıyabilecek güçtedir. Tahtanın tasarımı taklit edilerek yapılan bir materyal, günümüzde kullanılan diğer sentetik materyallerden 50 kat daha fazla dayanıklılık göstermiştir.34
Tahtanın bu dizaynı günümüzde de, mermi ve bomba gibi yüksek hızlı ve tahribatı güçlü parçalara karşı koruma sağlamak için geliştirilen maddelerde taklit edilmektedir.
Buraya kadar verilen birkaç örnekte de görüldüğü gibi, doğadaki malzemeler, son derece üstün tasarımlara sahiptir. Bir sedefin ya da bir tahtanın böylesine dayanıklı olması, özel yapılarının bulunması tesadüf eseri değildir. Açıkça görülmektedir ki, söz konusu malzemelerde üstün bir tasarım vardır. Her detay –katmanların inceliği, sıklığı, damarların sayısı, dizilimi vs.- bu dayanıklılığı sağlamak üzere özel olarak planlanmış ve kusursuz bir düzenle yaratılmıştır. Allah, bir Kuran ayetinde etrafımızda bulunan herşeyi Kendisinin yarattığını şöyle bildirir:
Göklerde ve yerde ne varsa tümü Allah'ındır. Allah, herşeyi kuşatandır. (Nisa Suresi, 126)
1. Ç̧ap 2μm | 4. Diğer ß plakası |
Doğada pek çok böcek ipek üretir ama örümceğin ürettiği ipek diğerleri ile kıyaslandığında büyük farklılıklar sergiler.
Bilim adamlarına göre örümcek ağı yeryüzündeki en sağlam malzemelerden biridir. Bununla birlikte örümcek ağının özelliklerinin hepsi sayılacak olursa çok uzun bir liste elde edilebilir. Fakat bu listedeki birkaç madde bile bilim adamlarının bu konuda ne kadar haklı olduklarını ortaya koymaktadır. Örümcek ipeğinin özelliklerinden birkaçını şöyle sıralayabiliriz:36
· Örümceklerin ürettiği ve çapı bir milimetrenin binde birinden daha küçük olan ipek ipliği, aynı kalınlıktaki çelik telden beş kat daha sağlamdır.
· Kendi uzunluğunun dört katı kadar esneyebilir.
· İpek aynı zamanda son derece hafiftir. Bu hafifliği şöyle bir örnekle de tarif edebiliriz: Dünyanın çevresi boyunca uzatılacak bir ipek ipliğinin ağırlığı sadece 320 gram gelir.
Bu özellikler tek tek bazı malzemelerde bulunabilir. Ancak hepsinin birarada bulunması son derece özel bir durumdur. Çünkü hem sağlam hem esnek bir malzeme bulabilmek oldukça zordur. Örneğin çelik halat en sağlam malzemelerden biridir. Fakat kauçuk halatlar gibi esnek olmadıklarından zamanla deforme olurlar. Kauçuk halatlar da kolay kolay deforme olmamalarına rağmen yeterince dayanıklı olmadıkları için ağır yükleri kaldıramazlar.
Şöyle bir düşünelim … Küçücük bir canlının ürettiği ip, nasıl oluyor da insanoğlunun yüzyıllarca edindiği bilgi birikimiyle yaptığı kauçuk halatlardan daha üstün özellikler taşıyabiliyor?
Örümcek ipliğini bu kadar üstün yapan şey, ipeğin kimyasal yapısında ve üretim merkezinde gizlidir. Örümcek ipliklerinin hammaddesi, örgülü helezonik amino asit zincirlerinden oluşan "keratin" adlı proteindir. Keratin; saç, tırnak, tüy, deri gibi birbirinden çok farklı maddelerin yapı taşıdır ve oluşturduğu tüm maddelerde koruyucu özelliği ile ön plana çıkar. Ayrıca keratinin esnek hidrojen bağlarla bağlanmış amino asitlerden oluşması, bu maddelere çok esnek olma özelliğini kazandırır. Bu esneklik Amerika'nın ünlü bilim dergilerinden Science News'de şöyle bir benzetme ile tarif edilmiştir:
1. İpek üretim bölgesi | 3. Memecikler |
İnsan ölçülerine göre, balık ağı boyutlarındaki bir örümcek ağı, bir yolcu uçağını yakalayabilir.37
Örümceklerin kuyruklarında altı bölümden oluşan ve ipek kesesi denilen bir bölge vardır. Keselerin her birinde farklı salgılar üretilir. Bu keselerin salgıları değişik kombinasyonlarda birleşerek farklı türdeki ipek ipliklerini meydana getirirler. Keseler arasında ise büyük bir uyum vardır. İpek üretimi sırasında örümceğin vücudunda bulunan ve son derece gelişmiş özelliklere sahip olan pompalar, vanalar ve basınç sistemleri kullanılır. Üretilen ham ipek, musluk gibi çalışan bölümlerden lif şeklinde dışarı akıtılır.38
Örümcek bu muslukların püskürtme basıncını da dilediği şekilde değiştirebilir. Bu, son derece önemli bir özelliktir. Çünkü bu işlem sayesinde sıvı keratini oluşturan moleküllerin yapısı da değişmiş olur. Valfler üzerindeki kontrol mekanizması sayesinde iplik üretilirken ipliğin çapı, direnci ve elastikiyeti de değiştirilebilir. Böylece ipeğin kimyasal yapısı değiştirilmeden ipliğe istenilen fiziksel özellikler kazandırılır. Eğer iplik üzerinde daha köklü bir değişim isteniyorsa bir başka bezin kullanımına geçilmesi gerekmektedir. Salgılanan farklı özelliklere sahip iplikçikler arka ayakların mükemmel kullanımı sayesinde istenilen doğrultuya yönlendirilir.
Örümceğin ipek üretim bölgesinden ayrıntılı bir görünüm. |
Örümcekteki bu kimyasal mucizeyi tam olarak taklit etmek mümkün olduğunda, gerektiği kadar esneyebilen emniyet kemerleri, son derece sağlam dikişler, iz bırakmayan ameliyat iplikleri, çok hafif kablolar, kurşun geçirmez kumaşlar gibi çok sayıda faydalı malzemenin üretimi yapılabilecektir. Üstelik bu malzemelerin üretiminde zararlı ve zehirli madde de kullanılmamış olacaktır.
Örümceklerin ürettikleri ipekler olağanüstü özelliklere sahip yapı malzemeleridir. Gerilme esneklikleri çok fazla olduğundan örümcek ipeğini koparmak için gereken enerji benzer diğer biyolojik materyalleri koparmak için gereken enerjiden on kat daha fazladır.39
Örümceğin ürettiği ipi parçalamak, aynı kalınlıktaki naylon bir ipi parçalamaktan çok daha fazla güç sarf etmeyi gerektirir. Örümceğin böylesine sağlam bir iplik üretebilmesinin başlıca sebeplerinden biri, temel protein bileşenlerinin kristalleşmesini ve katlanmasını kontrol ederek düzenli bir yapıda yardımcı bileşikler eklemeyi başarmasıdır. Örgü maddesi sıvı kristal olduğundan, örümcekler bu esnada minimum kuvvet harcarlar.
Örümcekler avlarını yakalamak için son derece nitelikli ağlar kurarlar. Ağ, havada uçan bir sineğin hareket enerjisini emerek durdurabilecek mükemmel bir tasarıma sahiptir. Uçak gemilerinde güverteye inen uçakları yakalamak için kullanılan gergin teller de örümceğin kullandığı sistemle benzeşir. Bu teller, 250 km/s hızla inen, tonlarca ağırlıkta bir uçağın kinetik enerjisini, tıpkı ağın yaptığı gibi güvenli bir şekilde emerek durdurur. |
Örümceklerin yaptıkları ipek, bilinen doğal ya da sentetik liflerden çok daha güçlüdür. Ayrıca örümceğin ürettiği ipeği, ipek böceklerindeki gibi direkt olarak alıp kullanmak mümkün değildir. Bu nedenle kullanım için mevcut alternatif "yapay üretim"dir. Araştırmacılar da, öncelikle örümceğin ipeğini sonra da bu ipeğin nasıl üretildiğini çok kapsamlı olarak araştırmaktadırlar. Araneus diadematus adı verilen bahçe örümceği üzerinde çalışan Dr. Fritz Vollrath, bu yöntemin önemli bir bölümünü keşfetmeyi başarmıştır. Vollrath araştırmalarının sonuçlarını şöyle anlatır:
Doğayı ve tüm canlıları yaratan Allah'ın ilminin ne kadar büyük olduğunu anlamak için sadece şu örnek bile yeterlidir: Örümcekler çelikten 5 kat daha sağlam ipek ipliği üretirler. Bizim en yüksek teknoloji ürünümüz olan Kevlar ise, yüksek sıcaklıklarda, petrol türevi malzeme ve sülfürik asit kullanılarak yapılır. Bu üretim sırasında enerji girdisi aşırı derecede yüksektir ve oluşan yan ürünler de çok zehirlidir. Üstelik sağlamlık açısından Kevlar, örümcek ipliğine göre zayıftır.41 |
Örümcekler ipeklerini, asitleyerek sertleştiriyorlardı. İpek, oluştuğu kanala girmeden önce, sıvı proteinlerden oluşuyordu. Kanalın içinde özel hücreler, ipek proteinlerindeki suyu kendilerine çekiyorlardı. Hidrojen atomları ise diğer bir kanalda pompalanan suyu alıyor ve bir asit havuzu oluşturuyordu. İpek proteinleri asit ile biraraya geldiğinde de, birinden diğerine bir köprü oluşturuyordu. Böylece son derece kuvvetli bir ipek oluşuyordu. Örümceğin ipeği, kurşun geçirmez yeleklerde, bisiklet kasklarında kullanılan ve bir tür plastik olan "kevlar" ile karşılaştırıldığında on kat daha sağlamdır.40
Bilim adamlarının ileri teknolojinin imkanlarını kullanarak elde ettikleri Kevlar, insan yapımı en güçlü sentetiktir. Fakat örümceğin ipeği Kevlardan çok daha üstün özelliklere sahiptir. Örneğin sağlamlığının yanı sıra örümcek ipeğinin yeniden işlenip tekrar tekrar kullanılması da mümkündür.
Eğer bilim adamları örümceğin iç işlemlerini başarılı bir şekilde kopyalamayı başarabilir, protein katlanmasının kusursuz olmasını sağlayabilir ve örgü maddesinin gen dizilim bilgisini ekleyebilirlerse çok özel özellikleri olan ipek temelli ipleri endüstriyel olarak üretmeleri mümkün olabilecektir. Bu nedenle örümcek ipliğindeki örme işleminin ne şekilde olduğu anlaşılabilirse, insan yapımı materyallerdeki başarının da artacağı düşünülmektedir.
Bilim adamlarının seferber olup araştırdıkları örümcek ipliği, 380 milyon yıldan beri örümcek tarafından kusursuzca örülmektedir.42 Bu durum, kuşkusuz Allah'ın kusursuz yaratışının delillerinden biridir. Şüphesiz bu olağanüstü olayların hepsi de Allah'ın kontrolündedir ve O'nun izniyle gerçekleşmektedir. Bu gerçek, bir ayette şöyle belirtilir:
... O'nun, alnından yakalayıp-denetlemediği hiçbir canlı yoktur… (Hud Suresi, 56)
Her örümcek, farklı işlevler için farklı niteliklere sahip iplikler üretir. Diatematus isimli örümcek, karnındaki salgı bezlerini kullanarak yedi farklı tipte ipek üretebilir. Bu üretim metodunun benzerleri günümüzde birçok tekstil makinesinde kullanılmaktadır. Ancak bu örümcekteki birkaç milimetreküplük üretim yeri, tekstil makinelerinin devasa boyutları ile kıyas bile kabul etmez. Örümceğin bir başka üstünlüğü ise ürettiği ipliğin tamamen geri dönüşümlü olmasıdır. Örümcek bozulan ağını yiyerek yeniden iplikçik üretebilir.
18 http://www. biomimicry. org/reviews_text. html; David Perlman, San Francisco Chronicle, November 30, 1997
19 "Malzeme Biliminin Önderlerinden İlhan Aksay", Bilim ve Teknik, Şubat 2002 s.92
20 www.princeton.edu/.../publicity/ PAW19980128/0128feat.htm
21 "Malzeme Biliminin Önderlerinden İlhan Aksay", Bilim ve Teknik, Şubat 2002 s.93
22 "Malzeme Biliminin Önderlerinden İlhan Aksay", Bilim ve Teknik, Şubat 2002 s.93
23 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.38
24 "Malzeme Biliminin Önderlerinden İlhan Aksay", Bilim ve Teknik, Şubat 2002 s.93
25 Bilim ve Teknik, Şubat 1995, s.38
26 http://www. watchtower. org/library/g/2000/1/22/article_02. htm
27 Janine M.Benyus, Biomimicry, Innovation Inspired By Nature, William Morrow and Company Inc. , New York, 1998, s.99-100
28 http://www. watchtower. org/library/g/2000/1/22/article_02. htm
29 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.38
30 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.39
31 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.40
32 http://www. rdg. ac. uk/AcaDepts/cb/97hepworth. html
33 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.39
34 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.40
35 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s. 40
36 Structure and Properties of Spider Silk", Endeavour, Ocak 1986, sayı 10, s.42
37 http://www. watchtower. org/library/g/2000/1/22/article_02. htm
38 Fritz Vollrath & David P.Knight, Nature, 29 March 2001, 541-548
39 http://iago. stfx. ca/people/edemont/abstracts/spider. html
40 http://faculty. washington. edu/yagerp/silkprojecthome. html;Gosline, J.M. , M.E.Demont, et al.(1986)."The structure and properties of silk. " Endeavour 10(1): 37-43
41 http://www.yourplanetearth.org/terms/details.php3?term=Biomimicry
42 http://faculty. washington. edu/yagerp/silkprojecthome. html; [(1) Shear, W.A. , J.M.Palmer, et al.(1989)."A Devonian Spinneret: Early Evidence of Spiders and Silk Use. " Science 246:479-481.